Improving the Efficiency of the
Distributed Stochastic Algorithm

(Extended Abstract)

Melanie Smith and Roger Mailler
University of Tulsa, Oklahoma
http://www.cnas.utulsa.edu
{melanie,mailler}@utulsa.edu

ABSTRACT

The Distributed Stochastic Algorithm (DSA) is a distributed
hill-climbing technique for solving large Distributed Con-
straint Optimization Problems (DCOPs) such as distributed
scheduling, resource allocation, and distributed route plan-
ning. The best known version of DSA, DSA-B, works by
having agents change their assignments with probability p
when making that change will improve their solution (a
hill-climbing move). To escape local minima, DSA-B per-
forms a lateral escape move by switching to another equally
good value with the same probability p. It is unclear why
hill climbing and escape moves are chosen with the same
probability. We investigate the performance effects of mak-
ing these moves with different probabilities, py and pr.
Through empirical evaluation, we discover that the efficiency
of DSA can not only be considerably improved, but can
be more specifically tuned to a particular domain or user’s
needs when these two move types are considered separately.
Our work also shows that DSA can outperform both DBA
and DPP when it is properly tuned.

Categories and Subject Descriptors

G.1.6 [Optimization]: Constrained Optimization; 1.2.11
[Distributed Artificial Intelligence]: Multi-Agent Sys-
tems

General Terms

Algorithms, Experimentation

Keywords
Distributed algorithm, Local Search, DCOP, DSA

1. INTRODUCTION & BACKGROUND

Distributed hill-climbing algorithms are very powerful, prac-

tical tools for solving numerous real-world problems includ-

ing distributed scheduling, resource allocation, and distributed

route planning. These problems can be easily mapped to
distributed constraint optimization, and like DCOPs, they
must be solved using algorithms that can make decisions

Cite as: Improving the Efficiency of the Distributed Stochastic Algo-
rithm (Extended Abstract), Author(s), Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10-14,
2010, Toronto, Canada, pp. 1417-1418

Copyright (©) 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1417

about how to best improve the global state of the problem
from an agent’s limited, local perspective. The ultimate goal
of distributed constraint optimization is to find a optimal so-
lution while minimizing the overall cost incurred to find it
(i.e. the required bandwidth, processing cycles, messaging,
etc.)

Complete algorithms are guaranteed to find an optimal
solution, but suffer because the cost they incur to find it
limits their scalability. So, in practice, one must accept a
close-enough solution, especially if the problem is large or
the solution needs to be derived quickly. Hill-climbing al-
gorithms tend to work very quickly even on large problems,
but do not guarantee that they will find an optimal solution.
There are a number of algorithms in this class including
the Distributed Breakout Algorithm (DBA) [2], Distributed
Probabilistic Protocol (DPP) [1], and one of the most pow-
erful algorithms from this class, the Distributed Stochastic
Algorithm (DSA) [4]. One of the greatest benefits of DSA is
that it uses considerably fewer messages than protocals like
DBA because agents communicate only when they change
their values.

DSA is a simple hill-climbing technique that works by
having agents change their value with probability p when
making that change will improve their solution. The setting
of p can have dramatic effects on the behavior of the algo-
rithm and can be quite problem specific. For instance, on
very dense problems, having high values of p can cause the
protocol to converge more quickly, but the same setting on
a sparse problem will cause it to oscillate unnecessarily.

Like other local search techniques, DSA employs a strat-
egy to escape local minima in the search space. One par-
ticularly dominant strategy, seen in the DSA-B variant [4],
is for an agent to change its value to an equally good value
when it detects that it is in a quasi-local-minimum (QLM)
[2]. In other words, it will move laterally in the solution
space by changing its value, but the overall solution does
not get better or worse. In DSA-B, these lateral moves are
chosen with the same probability p as hill-climbing moves.

It is unclear why exploration and exploitation moves are
chosen with the same probability, so we investigate the ef-
fects that lateral and hill-climbing moves have by allowing
agents to execute a lateral move with a different probability
(pr) than it would a hill-climbing move (pg). In this work,
we evaluate our DSA variants in two different domains to
show that while no single combination of p;, and pmy val-
ues perform the best in both domains, explicitly separating
these probabilities from one another is a simple change that



improves the efficiency of the algorithm. For brevity, we
only discuss one domain, but results were similar in both.

2. EXPERIMENTATION

To test our DSA variants, we implemented each in a dis-
tributed 3-coloring domain. The test cases were compared
on two main factors to determine the variant’s efficiency
- Total Messages Received and Improvement per Message.
During each time cycle, the current cost and the number
of messages transmitted were measured. These values were
used to plot the graphs shown throughout this paper.

Following directly from the definition for a DCOP, a graph
coloring problem, also known as a k-colorability problem,
consists of the following: a set of nvariables V = {z1,..., 25},
a set of g agents A = {a1,...,a4}, a set of possible colors
for each of the variables D = {Dx,..., D,} where each D;
has exactly k allowable colors, and a set of cost functions
F = {fi,..., fm} where each f;(d;,d;) is function that re-
turns 1 if d; = d; and 0 otherwise. The problem is to
find an assignment S* = {di,...,dn|d; € D;} such that
F(S) =", fi(S) is minimized. Like the general DCOP,
graph coloring has been shown to be NP-complete for all
values of k > 2.

2.1 Setup

For this domain, we conducted experiments that have n
variables and m binary constraints. The test series con-
sisted of random graphs with n = {100,200, 300, 400, 500}
variables and m = {2.0n,2.3n,2.7n} constraint densities to
cover under-constrained, within the phase transition, and
over-constrained environments. For each configuration of n
and m, 10 graphs were created and 3 different cases (initial
colorings) of each graph were run, giving 30 problems that
were solved. The random seeds for creating the graph lay-
outs and initial colorings were saved, so each variant solved
the same set of problems. Each run was given 500 cycles of
execution time. During a cycle, each agent was given the
opportunity to process its incoming messages, change its
value, and queue up messages for delivery during the next
cycle. The actual amount of execution time per cycle varied
depending on the cycle, the problem, and the probability
values.

2.2 Metrics

Final solution quality is the most obvious metric to com-
pare the efficiency of different algorithms. However, with
hill-climbing approaches, the end solution is important, but
what sets them apart is their overall efficiency in arriving at
an acceptable solution. The solution quality after 500 cycles
differs by about 1 for all the algorithms we test, indicating
that all produce competitive solutions. In fact, differences
are so slight that they are not statistically different, and all
were well within a standard deviation of one another.

However, even with such a negligible difference in end so-
lution quality, these algorithms should not be considered
equivalently efficient because they converge on their final
solution with considerably different costs. Thus, instead of
relying solely on solution quality, we use a metric to mea-
sure the ratio between cost and benefit by calculating the
cost reduction per message. In this way we consider both
the quality of the solution being found as well as the overall
expense for finding it.

1418

2290
2285
2280
22715
2270
2265 -

2260

pL

Figure 1: Overall cost reduction (bar) and cost re-
duction per message (line) for all graph coloring
agents for 300 nodes at 2.3n density.

3. RESULTS & CONCLUSIONS

When examining the effects each change in probability has
on the solution, we learn that allowing different probabilities
to exist allows the user to more finely tune the algorithm to
their distinct purpose. From the graph coloring test series,
we found that the agent with pr, = 0.0 and py = 0.3 was the
most efficient agent (see Figure 1), having a good solution
while also using less messaging than DSA with p = 0.3. So,
for users that want good solution without incurring much
expense, avoiding lateral moves is the right answer. If the
user is concerned with getting as close to optimal as possi-
ble, then using very restricted lateral moves is probably the
best option because the solution quality is nearly identical
to more aggressive choices while being considerably more
efficient and scalable.

When compared to DPP and DBA, the new DSA vari-
ants have a 163% and 32727% efficiency improvement re-
spectively. In both cases, the solution it arrives at is within
1% of the solution arrived at by its competitors. It should be
clear that although there is a balance necessitated between
conflicts and messaging, in some cases, unresolved conflict
might be more tolerable than the extra messaging it would
take to arrive at a better solution. In the other extreme,
messaging may not be a dominant consideration, so higher
values of pr, and py would be more appropriate.

4. REFERENCES
[1] R. Mailler. Using prior knowledge to improve
distributed hill-climbing. In Proceeding of IAT-06, 2006.
[2] M. Yokoo and K. Hirayama. Distributed breakout
algorithm for solving distributed constraint satisfaction
problems. In Proceedings of the 2nd Int’l Conf. on
Multiagent Systems, pages 401-408, 1996.
W. Zhang, G. Wang, and L. Wittenburg. Distributed
stochastic search for constraint satisfaction and
optimization: Parallelism, phase transitions and
performance. Proceedings of AAAI Workshop on
Probabilistic Approaches in Search, 2002.
W. Zhang, G. Wang, Z. Xing, and L. Wittenburg.
Chapter 13: A comparative study of distributed
constraint algorithms. Distributed Sensor Networks: A
Multiagent Perspective, 2003.

3]

(4]



